Direct Methods for solving linear systems:

Linear systems of equations are associated with
many problems in engineering and Science, as well as with
applications of mathematics for social Sciences.

Direct techniques are considered to solve the linear system

A, X +a X, +a.a, X, :bl
&, X, +a,X, +..a, X =b,

a X,+a . ,X,+..a X =b

n

for *1*y-giventhe &iforeach i, j =1,2,..., n



andb; for each =12,..n.

Direct techniques are methods that give an answer
In a fixed number of steps subject only to rounding

errors.

Linear system of equations:

+ X, +3X,=4 ..
Examples “rhe Four equation’s
2X, +X, =X, +X,=1

X, =X, =X, +2X,=3
—X; +2X,+3X =X, =4

X X5, X,

will be solved for the unknowns

(1)
(2)
(3)
(4)

the



equation (2), (3) and (4) by performing

(2)-2(1),3)-3(1)and (4) + (1)
the resulting system is

X, +X,+3X,=4 1)
X, —X,—9X, =1 (2)
—4X, =X, —1X,=-15 (3)
3X,+3X,+2x,=8 (4)

X

2
where the new equations are labled (1), (2), (3")
and (4).in this system (2) iIs used to eliminate
from (3°) and (4 ) by the operations



(3)—-4(2) and (4") + 3(2) resulting in the system

X, +X,+ 3X, =4
—X,—X,—9X, ==/
3X,+13x, =13
—-13x,=-13

the syster) noyv In reduced form and can easily be
solved for the unknowns by a back ward
substitution process, poting that-2, X, =0 X, =1

the solution is therefore
and



Gaussian Elimination:

Definition:

an n Xx m matrix is a rectangular array of
elements with n rows and m columns in which not
only is the value of an element |mportant but also

Its position in the array.
&, &, Ay ey

a a a a
A — (aij ): . 2.1 2.2 2.3 2m 1L rows

a, a, a, ... a

nm

|

—

~
Columns



An (n+1) x n matrix can be used to represent the
linear system

d X, +a,X, +...+a X, :bl
a, X, +a, X,+..+a, X =b,

a X, +a . X,+..+a X =Db

n

by first con&tructihg b b,
A _ .a2.1 a'2.2 aZn and b _ F)z
_anl anz ann _ _bn _




and then combining these matrices to form the
augmented matrix:

d, A, 4, b,
[A ,b] _ .a2.1 a2.2 a'2.n b2
_anl anz ann bn ]

where the broken lineis used to separate the
coefficients of the unknown from the values on the
right hand side of the equations.



Now, repeating the operations involved in Example
(1) in considering first the augmented matrix
associated with the system

1 1 0 3 . 4

2 1 -1 1 : 1

3 1 -1 2 i3 "
1 2 3 -1 4

performing the operations associated with

(2) -2 (1),(3)-3(1) and (4) + (1) iIs accomplished
by manipulating the respective rows of the
augmented matrix * which becomes the



performing the final manipulation results in the

augm

ented matrixq
0 -1 -1
0 0 3

0 0 0

3
—9
13
—13

A
-7
13
13




this matrix can be transformed Into Its

corresponding linear systenfand sdlutions for
and obtained.

The procedure involved In this process is called
Gaussian elimination with backward substitution.

Gaussian Elimination:

Thie eh &rdizfdrmi ‘applied {5 té e system
&, X,+a,X,+ .. +a, X =D,

2Nt n

a X, +a X,+ .. +a X =D

n



A=[Ab]=

4,
a2.1 a2.2
a‘nl an 2

the resulting matrix will be

A=|0._

A1 Gy Sy
O @2.2' v aE‘Zn
..... 0 a

al,n +1

a2,n+1

n,n+1_

al,n +1

a2,n+1

n,n+l |

the back ward substitution can be performed

solving the n"equation for x, gives



~a,n+1

nn

Xn—l

.,
and soon”

Example:

Solv%ﬁg!igggmptgm using the elimination

method: X, +X, +2x, =8

2X, +2X,+3x, =10
—X, =X, —=2X,+2X,=0



Solution:

10




performing backward substitution

X, =3
X,—2X,=—4 S Xy =2
X, X, =2-X,

arbitrary and

there Is no unique solution.

Example: Solve the linear s ggtem uilng the

elimination X1 me%b
X, =3, + X,=-1

X, + X, = 3



Solution:

Row interchange necessary

1 -1 3 211 -1 3 2
. A=[Ab]=|1 1 0 3|0 2 3 ¢ 1
3 3 1 -1] |0 0 -8 : 1|
X,=V,=0.875
2X, -3, =1 5 X, =1.8125
X, =X, +3X,=2 ~. X, =1.1875

Note: The difficulty of Gaussian method is that
sometimes you have to interchange rows and

| ] | | |
v mtrirma e vt vanll o smAt IMAarvriA A 11 iANILIAS et atesy 4~ +lAa A



Gauss-Jordan Elimination:

A popular variant of Gaussian Elimination is
Gauss-Jordan Elimination.

The idea Is to reduce all elements in a column
to zero except the diagonal element, Repeating this

proce,rglulre tg get, R (0D
0 a, v ——06— oY
o Ry G

_O 0 0 ann On(n—l)_




Example: Using the Gauss-Jordan elimination

method solve
4X, + 2X, +3X,

2X, —4X, =X,
—X, +X, +4X,

Example:
4 2 3 : [
A=l2 4 1% 1
-1 1 4 5

,
1
—5
23
5 2
2
5 i<
2 2




Now eliminate all elements in the second column
except the diagonal element -5.

We want to eliminate 2 from the second column
and eliminate 3/, from the third row to get

4 0 2 8

0 -5 0 1P
2

0 0 4 4|

Now, we wapt to gliminateg and >/, from the third

columngogets o _5
0. 0 4 —4




ThusX;=-1 X, =1 X, =2

Note: The Gaussian Elimination method is more
efficient.

Example:
+3 =
gblv %yééuss or(fan Elimination
2X , +A4X . —3X, =1
5x3+10x4 +195X =5

6

2X, +6X, +8X, +4x. +18x,



Solution:

>,

N O DN

The augmented matrix is

1

o o o

o O O

o O O W

0
—2
10
8

~ O b

O O O N

15
18




1 3 2 0 2 0 0
0o 0 1 2 0 3 1
0 0 0 0 .0 .0 0

0o 0 0 0 0 6 2

Interchanging the third and fourth rows to glve
1 :

3 2 0.2 0
0 0 1 2 0 3 1
0 0 0 0 0 6 2
0o 0 0 0 0 0 0



Adding -/, times the third row to the second row
and then adding 2 times the second row of the

resulting matrix to the first row yields the reduced
from 1 3 0 4 2 0 ; 0

o 0 1 2 © 0 i 0
o 0 0 0 0 6 i 2
o o0 O0 0 0 0 i 0

X,+3X,+4x, +2X,=0
the correspong)ng system of equations is
6X ¢ =2 S X =1/3
X, =2X,
X, =—3X,—4X, —2X,



If we assume

X2Xs afh  the arbitrary vdiles ! and

respectively the solution is
X, =—3y —4s — 2t

X, =y
s =—2S

g =S
s =1

<X X X
I

>
I

1
° 3



H. W.:

Solve the given linear system A equations

using either Gaussian Elimination or Gauss-Jordan
Elimination; —Sx +5y =-22

(2)

3)

3X +4y =4

4x —8y =32

X, +X,—=5X,=3

X, —9X, =1

2X =X, =%X,=0

X, =X+ 2X 5+ 2%, + 06X,

X, = 2X, +AX,+4x, + 12X
X, — Xg— X, — 3X;

2X,—2X, +4X, +5X, +15X,

2Xq— 2% 5+ 4%, + 4%, +13X,



CHAPTER =2

Matrices

Definition:

A matrices can be denoted by a rectangular

array of numbpers )
g Gy Ay,
a2.1 a2.2 a2.n
A=[g]=
Ayp o Agy e A,
_aml a‘m 2 amn ]




Definition:

If two matrices have the same size we can
add them

If A :[O‘ij] B :[:Bij}’

(A + B)ij = & +18ij' then

ol 2] 1 8] [ier 243] [0 5
" _I_ — jram
Xa'L‘;?)p =1 7|1 2] o-1 112 |1 3

Definition;

If A ic anv matriv and C ic anv cealar than



Example: "4 97
If Ais the matri& =| 1 3
__1 O_

8 4] 4

2A =| 2 6 (<1) A=|-1

then |-2 0] and -1

Definitig)gEAij]

| [ } IS-.an m X _n matrix.and
ij

I AaNn WY N MAatriv than




The product AB is an m x p matrix

AB :[Cij]

where

n
Cij = aikbkj —ailbij +ai2b2j +a

k=1

Example:

A —

A
5

—2
0

and

|

b..+a b

1373] in™ nj

Find,the groduct AB where

-3 2
—4 1



Solution:

AB =

=|=4

—ix —3+3x —4
=|4X —3-2x -4
| OX —3+0x —4

-9 1

=15 10

—I1x2+3x1
4x2+-2X,
5x 240X,




Definition:

The m x n matrix is.'square matrix
containing I’ 8 down main diagonal, O’s elements
elsewhere is fhe identity matrix

1 0 O
I,=|0 1 0
0o 0 1

Properties of the identity Matrix;:
If 1S Arqatrlx of order m x n then the
followm proPerfles Ere true:




The Transpose of a matrix:
The transpose of a matrix is formed by
writing its columns as rows

1 2 0 1 2
e.g. A=|2 1 0 then A' =| 2 1
0o 0 1 0 0

The inverse of a matrix:

Definition: A #0
The square matrix A has an inverse Iiff det
(Ais a non'singular)




if AB=BA=1I
then B =A"

To Find inverse of a matrix A If It exists:

by adjoining the identity matrix to the
coefficient matrix using row operation only (OR by
column operatipn only). 2 17

-1 -2 1

1

e.q.(1) A =
9- () 5 -3 4 0
3




1
1
0
3
1
1
S
2

N 4 S N N 4 O - ]
o
M AN M M ™M AN <« «d —
— — — —
o | LD _ _ _O | O O_ o | O o
L |




' | [ o o | o © © o d
i —i
l o oo | ooo © © A¢@
i |
ocooo | o oo | O+ © QO
— —
0_00_0_00_1000_
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-12 -2 1

9
—-13

16













Calculation of inverses of square matrix:

We give a way of calculatfhg if it exists.
Definition:
. . A= (aij :
A djoint matrix suppose we define
AA = (aij*) of of
the a djomt gf; when- . is the
172 =85’ i

cofactor of AA.

TlAai 1~ A ¥* 1~ +la A Frre e v 2 o~ 2~ ~Ff A v At rins 1+ A FAa At~






Consider

AA’

A*A =




S AA*=ARA =141,

c.—14 =det A

if B=——
14

A*=

14

..AB :BA:|3




Theorem:

For any n x n matrix A we hare
AA*=A*A =det A .l

Corally:

If Ais any n x n matrix with 8¢t ©

then A js non-singular and
1_

A = A*
det A
Example: _
HE o
Lo
A—|-1 1 1], det A = +
1 1 1
1 1 1




A esists.




det A0 = A 'exists
Altexists —= detA =0

Properties of inverse of matrices:

© (A=A
2) (cA)” =%A‘1 where ¢ is scalax .

@ (A) =(a7)

The inverse Product:

Theorem: IE }@Bar)ci B-gre invertible of under

n the AB Is invertible and



System of equations:

Theorem:
If A'is an invertible matrix, then the system
of linear equations represented by

AX = B has a unique solution given by
(An=B A
x =A7B. |[A7Ax=A"B

(IXx=A"B

Example:

Solve the system of equations wing an



2X +3y +Z =-1
X +3y +Z =1
2X +4y +Z =-2

Solution: )
2 3 1
A={3 3 1
2 4 1
-1 1
A't=-1 0




To solve X,
X =A"'B =




Elementary matrices:

Elementary matrices are of three types:
(i) " is determined by intercharging roW and

row. 1

M. (1) i A#0
1)

(i) IS obtained by multiplying  row by



M (1) = v det M (1) =1

- th

L 0 (A4) . 4 ].
() ) IS obtained from | by adding times
It

row 1o _ _

1
rOWw. 1

= th
5, (A) = 1 - A i " row

@ h < j" row
1

o(4) A (i,])"

T




Theorem:

If E Is an elementary matrix OR square

diagonal matrix and it A.a square matrix of the

det%E@ =det E detA.
same SiZe then
det(AE ) =det A detE.

Theorem:

Let Abe m x n matrix then a product p of
m X m elementary matrices and a product Q of n

X n elementary matrices such that PAQ Is a



Example:

SUppPOSEA =

10
0 1
0 0

Row operations
10
11
10

0
0
1

-1

—2 5
1 —/
8 —29
5 1]
= =2
29 37
5 1
-12 -3
24 6|

0
1
0

0
0
0

Column Operations




25

12

25

0 -6

-3
-6

—12
—24

3

0

6

-3

3

0




10011 -25 171Y2°Y g 00
| 01 123 | | o o4
1-1 100 | 11 =7=20{, ¢ o |7

1 0 1| |-1 8-29-7|lg o o 1| YV 0 00
B P - A A Q -
Theorem:

If a square matrices F, G, H, ... etc have

Inverses and are of the same size then their

product FGH . (relgihas anjnvefseand

Theorem:

Every elementary matrix has an inverse



Exercise:

(1)

(2)

Show that B Is the inverse of A

Findthe inve]

(@)

-2 2 3]

0 1 4

3 7 10

!

1-10,B=—|-4 -8
3

1 2

r'se Qf the mat
b3 79

7,16/ 21

4" -5 3]

14 -7

3
O_

rx (if it exists)



(3) Use an inverse matrix to solve the given

system of linear equations
X, —2X,—X;—2X, =
3X, —OX, = 2X ;=3X, =1
2X,—9X,=2X,-9X, =-1
=X, 4, +4Ax, +1x, = 2

(4)For each of the following matrices A and B find

the product of elementary-matrices

- 3.6 3]
(P.Q,R} dnd S} such tRat PAQ and RBS gre
A= 3 0 9 3/ B=
diagonalmatrices. 2 F 26
2 feveldpmeh




CHAPTER THREE

Determinants:

The equations:

a X, +a,X, Bl b1
A, S, +a,,5,; i bz

: Loy, —a 85, F 0
have a unique solution i

this quantity is called the determinant of the

coefficient matrix A.

Definitian: E)?lfhe daéfe}minant of a 2 x 2 matrix:
a2.1 a2.2



IS given by

A, A,
a2.1 a2.2

detA = =a,,a,, —a,,4,,

Definition:

If AlIs a square of order 2 OR grater, then the
determinant of A is the sum of the entries in the
first row of A multiplied by their cofactors.

Example: |0 2 1
A =3 —1 2

4 0 1




then

detA =3

Example:

=10+4=14
1 —2
-1 1

0 2

3 4

O O O Ww

=0-2(3-8)+1(+4)




then det A =

+ 2|0

O O O W

+3




2 3 0 3 0 2
+34-1 -1 + 25
4 2l 3 _2 3 4

=3{-1(-4-12)—(-9)+2(-6)} =3(16 +9-12) =39

The determinant of a triangular Matrix:

4. =2 0 0
A =
-5 6 1 0
vl Bale Bl Ui




Example:



4

0 1+=(1)(3)(2) 3

_2)

=—48

(DE)(2)(4)(-2)



Evaluation of a determinant using elementary
operations:

By elementary row operations we not that

1. Interchanging two rows of the matrix changed
the sign of its determinant.

2. Multiplying a row by a non zero constant
multiplied the determinant by that same
constant.

Theorem:

Condition that yield a zero determinant

I A ic » cAtinres mMmatriv anAd Aanvs Anf thea fAallavanin o



(1) An entire row (OR column) consists of zeros.

(2) Two rows (OR columns) are equal.

(3) One row (OR column) is a multiple of another
row (OR column).

Properties of determinants:

1.1f Aand B are square matrices of order n, then

ABJ|=|A] |BI.

2.1f Ais an n x n matrix and C Is scalar, then
cA|=CNA]|.
3.|A|+|B| # |A+B|




4. If AIs invertible then

A
Al

5.1f Alis a square matrix, then
Al=|A"

Applications of Determinants:

1)Cramers Rule:
Is a formula that uses determinants to solve
a system of n linear equations in n variables.

This rule can be applied only to systems of



consider two linear equations in two unknowns.
A X+, ,X ‘= b1
A, X+, X, = bz
a2.2b1 - a1.2b2
A ,,, — A, A,

then x,=

recognizing that the numerator and denominator

for both ngand X?Qar be represer‘w’ted as b;
. b

det&- ] e X, = a'2.1 2

R A, S TR

a2.1 a'2.2 a’2.1 a2.2




provided
d &, —a, &, F 0

Denoting:

NP &
a21 a2.2
0
ax P A
:)2 a2.2
b
AX = al.l 1
b2.l b2




for n linear equations,

e.qg./

al.lx 1 T a12X 2 + alSX 3

a2.1X 1 +X 2.2X 2 + a2.3)( 3

AKX +83,X, T 835X,

AX

A 4
a'2.1

Ay

a
a2.2

ds2

a,
a‘2.2

A3,




Area of Triangle in the x y - Plane:

The area of the triangle whose vertices are (x1, yl),
(X21y2) and (X31y3) IS given by

X y 1
Area = 1 1 1
iE X, 'y, 1=0
Xs ¥y 1

when the sign (x) is chosen to give a positive area

Example: Find the area of the triangle whose vertices are
(1,0), (2, 2) and (4, 3)




Solution:

Test for collinear points in the xy - Plane:

Area =

|+
N | -

N | W

Three points (x1, y1), (x2, y2) and (x3, y3) are collinear Iff:

X1

X,

X3

Yi
Y,
Y3

1
1
1




3.Equation of a line passing through two points:

e. g Finding the equation of the line passing through the points
(2,4) and (-1, 3) is given by:

. 4 1 12 1 |2 4
2 4 1=01e. X -y +1 =0
3 1 -1 1§ -1 3




4. \Volume of Tetrahedron

The volume tetrahedron whose vertices are (x1, y1, z1), ( X2, y2,
z2 ), (X3,Vy3, z3) is give by :

Xoo ¥y 7, 1

Volume = J_r1 %2 Y2 x .
6 X, vy, z, 1

Xo Y4 I, 1

Where the sing (z) is chosen to give a positive volume.



Test for coplanar points in space:

Four points (x 1, y1, z1), (x 2,y2, z2), (x 3, y3, z3) and (x 4, y4,
z4) are coplanar iff:

X, Y, Z, 1
X Z 1
2 y2 2 :O
X, Y., Z, 1
X, Y. Z, 1




5.Equation of a plane passing through three points:

The equation of the plane passing through the pints (x 1, y1, z1),
(X 2,y2, 22), (X 3,Y3, z3) Is give by:

X y Z 1
ST ST T
X, ¥, 2, 1
Xg Yy Iy 1
EXC.:
1) Show that P { 1 1

1 a 1 1|=@+3@-1’




2) Use cramers rule to find the solution of the system of

/inear equation

3 = 2X1 +3x2+ 3x3
13 = bx1l +6x2+12x3
2 = 12x1 +9x2 - X3

3) Find the determinant of the following n x n matrix

1-n 1 1 .1
1 1-n 1 .1
—0
1 1 1-n .. 1
1 1 1 1-n




CHAPTER -4
Vector Space

Vectors: 4.1)

The notation of a vector AB or a

B End point

A Origin



Zero vector has zero length , its direction is anywhere we like.
Two basic operations that can be performed with vectors

(1) Addition :

—

b = oc (Triangle-rule)

(parallegram rule)



(11) Multiplication by real number

Ka




Basic properties:

Al::a+b = b+ a (obvious from paralle gram rule)

A2: (@a+b)+C=a+(b+c¢)

(a+b)+C =OR +OR =0S P

C

a+({+c) =O0OA +OP

¢

—0A +AS =0S O

|



A3: a+0=a

A4 : Given any vector a -3 a unique a* such that a +
ar=0

We normally denote a by —a

a+(@)=0 / a /-g

Scalar multiplication properties:
si: (oc+f)X =oc X + X

S2: oc()i—l—)_/):oc)i—l—ocx



s3: a(fBXx)=(af)x
s4: o< (BX) = (< B)X

Vector in Plane:

Choose an origin and axes (not necessarily at right angle)
and a unit length, then every vector is represented by a pair of
coordinates.

OA = (4,3)
OB = (—2,3)




PN W

OC = (3,-2)




%

OX = (3, 1)

_)
Oy =(1, 2)
N
. OX +0Y =(3,1) + (1, 2)

= (4, 3)

If Ox; =x,
OX, = X,

OX 5 = X,




Than OX has coordinates X1, X2, x3

With respect to the axes through O

OX = (X1, Xy X3)

If X =(x1, x2, x3)
y=(yl, y2, y3)

Thenx+y =(x1 +yl, x2+y2, x3+Yy3)
And Kx = (Kx1, Kx2, Kx3)

Note : O = (0, 0, 0)

Example : Find the sum of the following vectors u = (1, 4)
V= (2’ '2)




Solution:
u+v =@0,49)+2,-2) 3 2

We can use * to prove A1l- A4 and S1 -S4 e. g/:
Sl
(c+B)x =X + fx

TheN (o 4 BYX = {(oc +B)X,, (oc +B)X . (o +B)X 5}
= (o0 X4,00 X5, 00X ) + (X, X, BX,)
= o0 (X4, X5, X5) + B(X1, X5, X 5)

—oc X + [FX

Using formula * and basic properties A1-A4 and S1-S4. We
prove all the algebraic properties of vectors.



So, instead of saying (x1, x2, x3) represent a rector or are
the coordinates vector we can say (x1, x2, x3).

Example : Let U =(2,-1,5,0), V=(4,3,1,-1) and

W =(-6, 2,0, 3) solve for X as
X =2u-—(v+3w)

Solution :

=2 U= (v+3w)

(4, -2, 10, 0) — (4,
3,1,-1)—(- 18, 6, 0, 9)
(4-4+18,-2-3-
6,10-1-0, 0+1-09)
= (18, - 11,9 - 8)

I><



1.1) If x+ty=X+z theny=2
Proof.: suppose x+y=x+z

The vector — X exists (A4)
Then  (x) + (x +y) = (-X) + (X + 2)

(X+X)+y=(Xx+X)+2Z (A2)
= 0O+z Q+y (Al,A4)
=z (A1, A3)
1.2) Ox=0
Proof. : x +0 = 1x = (1+0) x
= 1x + OX
= X +Ox

O = Ox



L3 (e x) =—(0)x

In particular — x = (-1) X

LA (c=pB)x =xx —(BX)

n — Vectors:

Definition: An ordered set (x1, X2, .... xn) of then real numbers
IS called an n-vector, we cannot give a geometrical interpolation of
n-vectors In physical space when n > 3.

Thesumofx =(x1, x2......... xn ) and
y =(vyl, y2.......... yn)

Is defined to be
(x1+vyl, x2,+y2....... Xn + yn)



And Is defined by X +Vy
The product of scales a and x Is

The set of all n-vector is denoted by Rn

Al — A4, S1 — S4 are true for n-vectors.
4.2) Sub spaces: —

Rn is called a vector space R® consist of all vectors in
3-space with a common origin O consider a subset S of R3

consisting of all vector lying in a plane through O.

We call S a sub space of R® (We regard a plane at a 2-
dimensional Space)

What algebraic properties does S have?



1.

(1) X, YES=>x+y€S

(1) X€E S=>ax€S where a is ascalar

Are there other types of sub set of R® that satisfy (i) and (i)? Yes.
The set of all vectors lying in a line through O.

Definition
Any subset set S of R?® satisfying (i) and (ii) is either R* itself.
all vector in a plane through O OR

all vector in a line through O OR
O alone




Example:

() The set of all 3-vectors type (x1, x2, O) is a subset of
R3,
(i) The set of all 4-vectors type (x1, x1, x2, x3) is a
subset of R4.

(i) The set of all vectors type (x1, x2) is not a
subspace of R*.

Since (1, D)€  set
(2, 4) set

but (1, 1) + (2, 4) = (3, 5) € set.



Example:
Which of the following subset is a subspace of R®.

H W _ (x1, x2, 1) X1, XjL rechnumber
(i) W =(x1, x1 + x3, x3) X1, X
Solution :

(i) Since O = (O, O, O) is notin W then W & R?

(i) Let u=(u,u, +u,uy)and¥= (v1, vl +v3,v3)
be vectors & \v and let C
number then u+v=(ul+vl ul +u3+vl+v3 u3
+ Vv3)

=(ul+vl, ul +v1l+u3+v3, u3+v3)

= (X1, x1 + x3, x3)
Where



Xx1=ul+vl and x3= u3+v3

Hence U+VEW

Now cU = (cul, c (ul+ u3), cu3)
— (cul, cul + cu3, cu3)

= (X1, x1 + x3, x3)

Where  x1 =cul and x3 = cu3

Hence CcU W
Since W is closed under addition and scalar multiplication, then

W is a subspace of R°.



4.3) Spanning sets and linear independence:

Definition.

Let X, y be two vectors Is 3- spaces in different directions.
Any vector of the form lies in plane determined by x and y.

Conversely. y

X + By

S

Every vector through O In the plane of x, y can be written in the
form  oc x + LY

We call <X + Y aliner combination of x and y.

Let X, y and Z be three vectors in 3- space not in the same plane.



Than every vector O, can be written in the form

X + Y +X  zior suitable scalars oc, [F& oc

This expression is called a linear combination of X, y and z.

Ve can extend this definition to Rn |
Z

y
O X

Example: 1nRr4a
- 3,10) is a linear combination at (1, O, 0, 0), (0,1,0,0), (0,0,1,0)
Because
(2,3,1,0) = 2(1,0,0,0) + 3(0,1,0,0) + 3(0,1,0,0) + 1 (0,0,1,0) +

0(0,0,0,0,0)



Example:

Write (3,-1,4,-6) as a linear combination of vector (1,0,3,-1), (2,1,-
1,1) and (-1,0,1,1).

Solution:

(3-1,4,-6)= X (1.03-D)+ £ (2,1,-1,1) + Y (1,0,1,1)

3= X +24 ) (1)

-1=f 2)

4:30C-B+7/ (3)

=X pry (4)
-3=3 f3




8—-4=0C
oL -2
From (4)
-6 = -2-1+ 7/
3=
(3, -1,4,-6) = 2(1,0, 3,-1) + (-1) (2,1,-1,1) + (-3) (-1,01,1)
=(3, -1, 4,-6)

In 3- space let X, y. Z be three vectors in the same plan
but in different direction then each iIs a linear combination the
other two.



Example:

Suppose y=(§,+1,_—2j, Z=(—Lg,2),
— \ 2 3 3

Then )i:zy _|_§Z :(E’g’Zj
- 2 2 3

Also :i)i_éz_ :[E’]_,__Zj
= 2 4 27 3

2 4 2

= — i — —1,_,2
z =X -3y ( 3 )

Alsowe get 2x—4y -3z =0

Here is a non-trivial linear combination of X, y, Z equal zero



(If p, g, Yare any three vectors then
op+ogq+oy=0

We call this trivial linear combination ofp,q and 7/

Definition:

Let X1, X2, ........ xr be n-vectors , if 3 scalars ay, oy, .., o, not.

all zero

Suchthat 4 X1+a2x2+..+arxr=0

Then x1, x2, ... xr are linearly dependent or from linearly
dependent set.



Example:
(1,02,1)+3(2,-2,4,2)+(-2)(5,6,7,8)+(-6)(0,-3,1,-1)
=(0,0,0,0)=0
(1,0,2,1), (2,-2,4,2),(5,6,7,8)and (0, -3, 1, -1)

Are linearly dependent

Example:

The victors X, X, y are linearly dependent

Because
Ix+(-1)x+0y=0
Theorem :

the 3- vectors x, v, z are linearly dependent then they are
coplanar .



Proof :

Since x, v, Z are linearly dependent , scalars o, 3, y (not
all zero) such that

ax + By + 7'z =0
Suppose without loss of generality that

a# 0 then

ox =-By- 7z &Z—y—lz_
o (04

So xis alin. Comb Ay, z

x lies on the plant Ay and z .

. X, Y, Z are coplanar , they all lie on the same plane.



Theorem:

If x1, .., xr are linearly dependent then at least one conversely.
Proof:
(a) suppose x1, .., xr linearly dependent then
>scalars a, .., ar not all zero such that

alxl+...+oarxr =0
then W.L.O.G a #0

alxl =-a2x2 - ... - Arxr
-, -
)i]_ )iz_! """" ) : )ir
04 o,

(b) Conversely If



X1 =-a2/alx2 - ... -ar/alxr
Then
1x1 —B2%x2 - ... -Prxr=0
At least one if the scalars 1,-B2, ..., -Br
Is non- zero, and

X1, ..., xr an linearly dependent

Theorem:
any set if vectors containing O is linearly dependent.

Definition:

A set a victors, that is not linearly dependent is linearly
iIndependent.



Alternative definition:

The victors x1, ..., xr are linearly independent
If al x1+ ..+ arxr=0only when all Scalars

al, ..., ar are zero
ol=o02=...=oar=0

Example: the following sets for lin. dep. or lin. inep.

()(1,1,-1) , (2,1, 3), (7,5,3) in R3
(11) (1,1,0,1),(2,-1,1,0),(2,-1,-1,-1) in R4

Solution:

() Can we find scalars a, [3, 6 not all zero such that



o (1,1,-1) +B(21,3)+ (7.5,3) = (0,0,0) = 0
a+20+7y=0
L+2y=0
a+ [F+5yr=0 ¢ 40 +8y =0
5 +10y =0
—a+306+3y=0

p =2y
W p=2  y=-1 L
S (LL-D, (213,  (753)

3

(1,1,-1),((2,1, 3), (7,5, 3) are lin. dep.



« Can we find scalars ¢, 3, notall zero such that

a(11,0) + £(1,—-11,0) + »(L,—-1-1-1) = o

cc + L+ 3y =0 O
05—,8—7/=0>

L —y =o0
o _7/:0)

7 (1,1,0,1),(1,-1,1,0),(1,-1,-1,-1)
« Are line ind.p.

PN

| Q
N R



Theorem:

(a) Letx,:---> XsE N

then the set of all linear COMBINATION of &1
Is a subspace S of R"

(b) if T is any subspace of ‘R"containing X,:---»

Then S <= T (S containin T).



Proof:

(a) The sum of two linear combinationg,.....x, IS
another line comb. if -+, .S satisfies condition
(1) for being subspace .

(o X+ o+ X)) (LX) +...+ S X)
— (al +/61))_(1 ++(as +IBS))_(S

Also (o X, +...+a. X )= (o)X, +...+ (e, ) X..
.S satisfies condition (i)
" S Is subspace.



(b) If T contains z,:----x, then T contains all their
line. Comb.

S <= T (T contained in S).






Definition:

let S={v.,v,....,v.} be a subspace of a vector space
V. then S is a spanning set of V if every vector in
V can be written as a line. Comb of vectors in S
then we say S spans V.



Example:
The set 5={(1,0,0),(0,1,0),(0,0,1)} spans

R,

Since any vector u = (U, U,,U,) € R’

can be written as =y, (1,0,0) +u,(0,1,0) + u,(0,0,)

= (Uliuzius)



Example:

Let x =(1,010) X, =(110,0), 6 X3= (0111)

The subspace S spanned by )_(1, )_(2 , Xg

consists all vector S of the form :

«,(1,0,1,0) +«,(1,1,0,0) + «,(0,1,1,1)

=(a, + 0ty 0, + sy 0+ s, OLy)



Theorem :

If We have a spanning set for a subspace S then any set
obtaining by adjoining extra element of S is also a spanning set
Sketch of proof :

o Xyt t O X+ 4 0Y 4+ 0Y

S=—S

Theorem : o
If Xpseoeren , Xare line independence
and subspace S then no proper sub
set Of X{yeeeens. , X

can span S.



Sketch of proof :

Ko yeureens , Xs for example can not span S. because X; € S
, but n is not a line. Comb of Xs,....... y Xs
Theorem :
If a set of vector {X,,......., X, }is line dep . then any larger set

s X0 Y Y s line dep.

Proof :

.". Notall scalars on'L.H.S are zero Xyiea Xy Y. yores Y

are line dep .



Corollary:
If a set is line indep then any subset is line indep .

4.4) Basis and Dimension :

n
DEFINITION :Let S be a subspace of - R Any line indep
set in S that spans S.is a basis of S .

Theorem :
If' ' X,,......,X,  are line indep vectors in subspace S and if

Yy Yo 'span Sthen | < S



Theorem :
LI CHP €m and f....if_are bases

LRTRR f.are line indep.
€€y span S.

.n<m
S.m=n
We call this number m the dimension of S (dim S).



Example:

Show that S is a basis for R>where
S={(1,0,0),(0,1,0),(0,0,1)}.

Solution:

To prove that S is line indep .
«,(1,0,1,0) + «,(1,1,0,0) + ,(0,1,1,1) = (0,0,0)
.'.051=0 0[220 g3:O

o, =a, =0, =0



.S islineindep.
Does S span R

Let u=(u,,u,,u;)eR®
Then u=u,(1,0,0)+u,(0,1,0)+u,(0,01)
= (U;,U,,U,)
Sspan R®

.". Sis abasis for R®



Example : 5
Show that S={(1,1),(1,-1)} is a basis for R

Solution :
Let xeR? where X=(X,X,).

To show that X can be written as a linear combination of

X= (X1’ Xz) =CV, +GC,V,
= ¢, (LD +c, (L-1)
= (Cl +C,,C _Cz)
X1 = C1 ar C2

X, =C =G,



". Since the coefficient matrix of this system has a non-zero
determinant then the system has unique solution.

S spans R?
To show that S is line indep .
c,v, +C,Vv, =0

c,(L1) +c,(@—1) = (0,0)
(Cl +C,,C _Cz) =(0,0)

c,+¢, =0
c,—¢C,=0
2c, =0

c,=¢C,=0

.. Sis line indep

.. Sis a basis for R?



Theorem:

If Xy......, Xare line indep-and if X;.;is not a line .comb. of
Xpooeeen X N X X X are line indep.
Proof
Can we find scalars @&, &, NOt all zero such that
O Xy ot O X 0 X =00 20 (1)
-
If equation (1) satisfied then .. =0 ( for other wise X7~ %7~
Hence ax +....+a.X, =
Hence % =--=2=0 (for other wise X --.,X, would be line . dep).
Jo Xy Xy X @re line CIndep
R" has a basis :
e, =(0,...,0)
e,=(01...,0)
e, =(0,01,...,0)
e, =(0,0,...,1)

n
Containina N VP.CTOI’SSgO




Proof :
If «,(10.,...,0)+....+,(0,0,......1) =(0,0,....,0)

Then (a,a,,.....a,)=(00,...,0)
Loyg=a,=..=a,=0
vectors are line .indep

Also any vector (4;....4) in R" can be written
B,(10,...0) + B,(01,.-..0) +...+ 53,(0,0,....)

.".vectors span R"



Theorem : i
Every subspace S of R has dimension <n

(subspace {0} has dim 0)

Corollary: )
If A,B are subspaces of R" and if Ais contained in B then dim A < dim B.

(Ac B)




Example :
Find the dimension of the subspace W of R* spanned by

S ={(~1,25,0),(3.01-2), (=5.4.9.2)}

Solution :
W is spanned by S, S is not a basis for W because S is line .dep

V3 can be written as line comb. OfV1, V5
V, =2V, -V,
W is spanned by S, ={v,,v,}
S, is line. Indep

—.dim W =2.



INTERSECTIONS AND SUMS OF SUBSPACES:

Let Sand T be subspaces of $R". Then their intersection
denoted by S n T consist of all vectors common to

Sand T.
The sum, S+T of the subspaces S and T is defined as
X+Y;XesS, yeTl}].

THEOREM: N/, —

If S, T are subspaces in $R" then'so are Sn T and S+T.

PROOF:

(a) Suppose X,.Y €SNI and & is scalar .then
xesSnT sxeSandxeT

XeSnT .'.XeSanchT




. X+YES (since S is a subspace.)
X+yel
X+YyedsSnT
Also -

aXeS,axel

axeSnT.
.S nTis asubspace.
(b) Consider two vectors in S+T

(x +y)and(x +y )

Where X;, X, € S, yl, y2



XY )+ 0G+Y )= (X +X)+ (Y +Y.).

X +X, €5,y +y €T,

S(X X))+ (Xl +X2) eS+T.
AlSO g (x, + y)=« )_(¢1+ ay,
l
€5 eT

(X, +l’1) eS+T.

..S+T Is a subspace .



THEOREM:

DimSnT+dim (S+T)=dim S +dim T.

EXAMPLE:

n 3-space let S, T in plane through the origin . Then
DIm S =dim T= 2.

DIM (SnT)=1, S+T=R">

1+3=2+2).




LINEAR TRANSFORMATIONS:

Geometrical transformation in a plane and in 3-spaces
e.g/ rotation about a point.

reflection in a line.

rotation about a line.

magnitication , stretch, shear .
These transformations map points into points .

But if we denote the centre of a rotation by O or if we
choose a point O is the line of a reflection or a rotation
then these transformations map vectors with

Origin 0 to a vector with origin O.




Such a transformation of vectors can be denoted by T

and if T transform or map b
\ . \
Vector XtO X" we write XT = X .
0 p'
EX . Shear

Denote shear by S it transform the point

(o, p)o(a + S, F)
s, B)S = (a+ B B)-

DEFINITION:

If T Is any lineear transformation of V.into W ,T:V\— W
then vy y ¢\ and for any scalar —1_




@) (x+y)T =xT +yT.
P (AXT = A(T).
DEFINITION:

A mapping (or transformation) T from RO Y% a linear
Transformation of

(N(xX+y)T =XT +yT
(I)((AX)T = A(XT)

N
For all vectors)_(, y S mand for all scalars A .

EXAMPLE: _2 : :
showthat 1 :R°— R°whereV =(v;,v,) e R".

(Vi Vo )T = (V= V5,V +2V,).




SOLUTION:

(NU+Vv)T =(u +v,u, +Vv,)T

:(ul +V1)_(u2 TV, )’ (ul +V1)+ 2(u2 TV, )]

:(ul B uz)"’ (Vl -V )’ (ul T 2”2) T (Vl T 2V2 )]

= (U, = Uy, U, +2U,) + (v, =V, V, + 2V, )

=uTl +vT
(i) Since AU = A(U,, U, )= (AuU,, AU,)

(AT =(Au,, Au, )T = (Au, — Au,, AU, + 2U,)
AU, =u,,u, +2u,)

= A(UT). :Tis a linear transformation.



Properties OF linear transformations

let T be a linear transformation V into W
when u and v &4heR the following properties are
true :

1) (0O)T =0.
2) (-v)T =-(v)T.
3) (U-V)T=(WT = (V)T.
4) IFv=CV, +CV, +.0.+C.V then
WT = (CV, +CV,+.0.+CV T

~GVITAC )T+ A€ (T




EXAMPLE:

Let: R° > R’ such that

(1,0,0)T = (2,-1,4)

(0,1,0)T = (1,5,-2)

(0,0,1)T =(0,3,1) FIND (2,3,-2)T.

SOLUTION

Since (2,3,-2) = 2(1,0,0) + 3(0,1,0) - 2(0,0,1)

This from property (4)

(2,3,-2)T =2(1,0,0)T + 3(0,1,0)T — 2(0,0,1)T
=2(2,-1,4) + 3(1,5,-2) — 2(0,3,1)
=(4,-2,8) + (3,15,-6) — (0,6,2)
=(7,7,0)




« DEFINITION:
The set of all image vectors X T (when Xe& R" ) IS
called the image of T denoted by ImT.
IMT = { xT;xeR™ }
THEOREM:
IF T is a linear transformation from $R™toRthen imT is

A subspace of SR"

PROOQOF:
Suppose Q V Im
then U=XT',V=YyT" ‘where X,y € R"

U+V=X ;yT (X+y)T eimT.



Also
cou=ca(XT)=(axX)T eimT.
ImT satisfies both conditions for being a subspace
DIFINFTION:

The set of vectors X such that XTI = 0 s called

kernal of T.
KerT={ X ; XI =01}




THEOREM:

The kernel of T: sg™ _5 sy" is a sub space of R™
PROOF:

We must prove thatif X, Y € KerT then

X+YyekerT

and o x ekerT
THEOREM:

If T is a linear transformation from' R ™ into SR" then
dim (kerT) +dim (imT) =m.




EXAMPLE:
Find the kernel of the linear transformation
T: R? > R® given by
(X, X)T = (X, —2X,,0,—X,)
SOLUTION:
To find ker (T) we need to find all X= (X, , X, ) such that

(X, X,)T = (X —2X,,0,—X,)(0,0,0)

X1—2X2=O . X1:O
8—="10 SoX, =0
— X, =0

(Xl’ Xz) — (O’O)
< ker (T) ={(0,0} ={O }



EXAMPLE:

Suppose T is a linear transformation from SR “toR°
define as follows:

(X, X0y Xay X, )T = (X, + X5 = X4, Xo + X5 + Xy, X, + X, +2X,)

Find the ker (T) .
SOLUTION:
X e ker(T)if XT =0
If X +X=X,=0

X, + X% +X,=0

X + X, +2%,=0



Typical element in ker T is (—a +f[,—a-p, a,IB)

er(M={ar(-1-110).40 4B -0+ AL-LOD

The vectors(-1,-1,1,0),(1,-1,0,1) form basis for kerT
because they span it and they are line .Ind .

L dimker(T) =2
Typical element in image of T

(X X3 = Xy Xp X+ X, X+ % +2%) = (L, , 1, 1,)

when t,=t +1,



So, Typical element in image of T is
(t,t,,t+t,)=1(101)+t,(011)

~dim im T=2.

THEOREM:

Let T: V— W be a linear transformation , then T is

One-to-one iff ker (T)={ 0}.

THEOREM:

Let T: V—— W be a linear transformation , then T Is

Onto Iff the rank of T is equal to the dimension of W.




